Math 227A: Problem Set 1 and Further Suggested Exercises for Week 2

The following exercises comprise Problem Set 1, and are due on April 15:

- 1. Hatcher 4.1.10, 4.1.14, 4.2.8, 4.1.19.
- 2. Find an example of a continuous map $f: X \to Y$ between CW complexes for which each induced map $f_*: \pi_n(X, x_0) \to \pi_n(Y, y_0)$ is trivial but f is not a nulhomotopy.

The following are suggested exercises for Week 2:

- 1. Hatcher 4.1.12, 4.1.18, 4.2.9.
- 2. Adapt the proof we gave in class of the long exact sequence for a pair $A \subset X$ to a triple $B \subset A \subset X$:

$$\cdots \to \pi_n(A, B, x_0) \to \pi_n(X, B, x_0) \to \pi_n(X, A, x_0) \to \pi_{n-1}(A, B, x_0) \to \cdots$$

(This is proved in Hatcher, but you should make sure you can do it without referring to the text.)

- 3. The following exercise is optional and mostly targeted at people who like Heegaard Floer theory: Given a space X with the homotopy type of a CW complex, its *n*th symmetric product is the quotient of the product X^n by the action of the symmetric group S_n on the factors. More concretely, a point in $\text{Sym}^n(X)$ is a g-tuple of unordered points in X.
 - What are the homotopy types of $\operatorname{Sym}^n(S^1)$ and $\operatorname{Sym}^n(\mathbb{C})$?
 - Let X be an n-punctured surface of genus g. What are the homotopy groups of $\operatorname{Sym}^{g+n-1}(X)$? (Hint: There is a relationship between symmetric products of wedge sums and symmetric products of ordinary product spaces.)
 - Restrict to the case that X is a sphere. Let $\{\alpha_1, \dots, \alpha_n\}$ be a set of nonintersecting simple closed curves such that each component of $X - \{\alpha_1, \dots, \alpha_n\}$ contains a single puncture. There is a torus $T_{\alpha} = \alpha_1 \times \cdots \times \alpha_n$ contained in $\operatorname{Sym}^{g+n-1}(X)$. Show (without explicitly writing down a map) that \mathbb{T}_{α} is a deformation retract of $\operatorname{Sym}^{n-1}(X)$.